Improved estimation of electricity demand function by using of artificial neural network, principal component analysis and data envelopment analysis
نویسندگان
چکیده
Due to various seasonal and monthly changes in electricity consumption and difficulties in modeling it with the conventional methods, a novel algorithm is proposed in this paper. This study presents an approach that uses Artificial Neural Network (ANN), Principal Component Analysis (PCA), Data Envelopment Analysis (DEA) and ANOVA methods to estimate and predict electricity demand for seasonal and monthly changes in electricity consumption. Pre-processing and post-processing techniques in the data mining field are used in the present study.We analyze the impact of the data pre-processing and post-processing on the ANN performance and a 680 ANN-MLP is constructed for this purpose. DEA is used to compare the constructed ANNmodels as well as ANN learning algorithm performance. The average, minimum, maximum and standard deviation of mean absolute percentage error (MAPE) of each constructed ANN are used as the DEA inputs. The DEA helps the user to use an appropriate ANN model as an acceptable forecasting tool. In the other words, various error calculation methods are used to find a robust ANN learning algorithm.Moreover, PCA is used as an input selectionmethod, and a preferred time seriesmodel is chosen from the linear (ARIMA) and nonlinear models. After selecting the preferred ARIMA model, the Mcleod–Li test is applied to determine the nonlinearity condition. Once the nonlinearity condition is satisfied, the preferred nonlinear model is selected and compared with the preferred ARIMA model, and the best time series model is selected. Then, a new algorithm is developed for the time series estimation; in each case an ANN or conventional time series model is selected for the estimation and prediction. To show the applicability and superiority of the proposed ANN-PCA-DEA-ANOVA algorithm, the data regarding the Iranian electricity consumption from April 1992 to February 2004 are used. The results show that the proposed algorithm provides an accurate solution for the problem of estimating electricity consumption. 2012 Elsevier Ltd. All rights reserved.
منابع مشابه
Modelling of some soil physical quality indicators using hybrid algorithm principal component analysis - artificial neural network
One of the important issues in the analysis of soils is to evaluate their features. In estimation of the hardly available properties, it seems the using of Data mining is appropriate. Therefore, the modelling of some soil quality indicators, using some of the early features of soil which have been proved by some researchers, have been considered. For this purpose, 140 disturbed and 140 undistur...
متن کاملCombined Unfolded Principal Component Analysis and Artificial Neural Network for Determination of Ibuprofen in Human Serum by Three-Dimensional Excitation–Emission Matrix Fluorescence Spectroscopy
This study describes a simple and rapid approach of monitoring ibuprofen (IBP). Unfolded principal component analysis-artificial neural network (UPCA-ANN) and excitation-emission spectra resulted from spectrofluorimetry method were combined to develop new model in the determination of IBF in human serum samples. Fluorescence landscapes with excitation wavelengths from 235 to 265 nm and emission...
متن کاملCombined Unfolded Principal Component Analysis and Artificial Neural Network for Determination of Ibuprofen in Human Serum by Three-Dimensional Excitation–Emission Matrix Fluorescence Spectroscopy
This study describes a simple and rapid approach of monitoring ibuprofen (IBP). Unfolded principal component analysis-artificial neural network (UPCA-ANN) and excitation-emission spectra resulted from spectrofluorimetry method were combined to develop new model in the determination of IBF in human serum samples. Fluorescence landscapes with excitation wavelengths from 235 to 265 nm and emission...
متن کاملOnline Composition Prediction of a Debutanizer Column Using Artificial Neural Network
The current method for composition measurement of an industrial distillation column includes an offline method, which is slow, tedious and could lead to inaccurate results. Among advantages of using online composition designed are to overcome the long time delay introduced by laboratory sampling and provide better estimation, which is suitable for online monitoring purposes. This paper pres...
متن کاملEstimating Efficiency of Bank Branches by Dynamic Network Data Envelopment Analysis and Artificial Neural Network
Network data envelopment analysis models assess efficiency of decision-making unit and its sections using historical data but fail to measure efficiency of its units and their internal stages in the future. In this paper we aim to measure efficiency of stages of bank branches and obtain efficiency trend of stages during the time, then to estimate their efficiency in the future therefore we can ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computers & Industrial Engineering
دوره 64 شماره
صفحات -
تاریخ انتشار 2013